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ABSTRACT We present an approach for the reconstruction of textured 3D meshes of human heads from
one or few views. Since such few-shot reconstruction is underconstrained, it requires prior knowledge
which is hard to impose on traditional 3D reconstruction algorithms. In this work, we rely on the recently
introduced 3D representation — neural implicit functions — which, being based on neural networks, allows
to naturally learn priors about human heads from data, and is directly convertible to textured mesh. Namely,
we extend NeuS, a state-of-the-art neural implicit function formulation, to represent multiple objects of a
class (human heads in our case) simultaneously. The underlying neural net architecture is designed to learn
the commonalities among these objects and to generalize to unseen ones. Our model is trained on just a
hundred smartphone videos and does not require any scanned 3D data. Afterwards, the model can fit novel
heads in the few-shot or one-shot modes with good results.

INDEX TERMS 3D portraits, 3D reconstruction, few-shot, head reconstruction, meta-learning, neural
implicit functions

I. INTRODUCTION
We consider the task of 3D portraiture, i.e. automatic acqui-
sition of 3D models of human heads that capture both the
geometry and the texture. This automation avoids costly and
time-consuming processes of manual creation of such mod-
els. While there is a number of approaches to modeling 2D
head appearance [1]–[3], here we consider 3D head modeling
as an important task that finds applications in filmmaking,
AR, VR, XR, gaming industries. While a number of learning-
based methods for this task have been suggested [4], [5],
most of these methods require 3D scans or synthetic data for
learning. Here, we propose an alternative approach that learns
to model human head shape and appearance directly from a
collection of RGB videos.

Our approach is based on a recent class of methods that
use implicit representations for shape and appearance such
as the recently introduced NeuS method [6] and very related
approaches introduced in parallel with NeuS [7]–[9]. We
introduce new and simple way to fit such models to individual
videos, while sharing a subset parameters, resulting in the
approach that we call Multi-NeuS.
We show that sharing the parameters across training videos

facilitates knowledge transfer to new individuals unseen dur-
ing training. As a result, Multi-NeuS achieves noteworthy
data-efficiency (capable of learning a generic human head
model from the videos of as little as 103 individuals) and is
fast to train (takes only 24 hours on a single V100GPU). After
training, Multi-NeuS can create convincing textured 3D head
meshes from as little as a single photograph (Figure 1).
Within this work, we investigate two parameter sharing

patterns and sharing-related regularizations that can be used
within Multi-NeuS. These are (1) sharing the parameters of
layer subsets, as well as more sophisticated (2) low-rank
regularization on non-shared parameters. We assess the effect
of the sharing setting on the quality of the results.
Overall, in the experiments we show that our system is

capable of creating high-quality 3D portraits from few pho-
tographs, and reasonably good portraits from single in-the-
wild photographs. More generally, our approach proposes
a new way to do transfer learning within implicit shape
and appearance modeling frameworks, and we hope that our
findings will boost future meta-learning research involving
implicit functions. To sum up, our contributions are:
• We introduce a new type of 3D neural implicit architecture
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FIGURE 1. Multi-NeuS can reconstruct a realistic textured 3D mesh of a head from a single in-the-wild photo or painting despite significant domain gap
with our training data and the small number of identities in the training set.

that can efficiently fit to many objects of the same class
simultaneously and recover their surfaces, given sets of
multi-view photos.

• We devise a meta-learning pipeline for the above model
that enables it to reconstruct the textured 3D surface of an
unseen object from one or few images.

• We demonstrate that our system can be applied to single-
view reconstruction of 3D full head portraits, producing
convincing 3D meshes from in-the-wild images after being
trained on just a hundred short smartphone videos.

II. RELATED WORK
A. NEURAL IMPLICIT 3D RECONSTRUCTION
Neural implicit functions have attracted a lot of attention
recently, notably as a flexible approach to represent 3D scenes
with neural networks. Contrary to traditional explicit 3D
representations such as meshes, they are not limited to a
fixed resolution or topology, and, most importantly to us,
can naturally employ the power of modern neural network
methods.

Neural radiance fields (NeRF) [10] and its extensions
(e.g. [11]) model density and emitted radiance with neural
nets which are trained via backpropagating through volumet-
ric ray casting. Although NeRF achieves impressive results
in novel view synthesis, it is not designed for reconstructing
geometry: meshes directly obtained from NeRF density func-
tions are often full of artifacts [7].

Amore ‘‘geometry-friendly’’ implicit approach is to model
the object surface as a zero-level set of implicitly defined
occupancy [12] or signed distance function (SDF) [13], [14],
which goes back to the classical works on level set recon-
struction [15]. The isosurface can then be easily converted
to a mesh via marching cubes [16]. To train such models
without 3D supervision, several authors have done inverse
rendering by modeling color or radiance similar to NeRF
and then applying some kind of ray marching [6]–[9], [17],
[18]. From these single-scene multi-view methods, we pick
NeuS [6] as a base of our multi-scene few-view method due
to simplicity and code availability. We revisit NeuS in more
detail in Section III-A.

B. META-LEARNING NEURAL IMPLICITS
The meta-learning paradigm addresses (among other things)
the few-shot problem when given several training examples
the network aims to achieve better performance. The most
common line of approaches is the optimization-based ap-
proaches [19], [20] that learn the best weight initialization.
For a deeper meta-learning review we refer the reader to
[21]. Regarding the application of meta-learning to neural
implicits, MetaSDF [22] exploits this idea to learn the ini-
tialization of the SDF network, while the work [23] applies
meta-learning to a wider variety of signal types. Our work
concentrates on human body representation and uses shared
network layers across different tasks (with different people
identities).

C. FEW- OR SINGLE-VIEW HEAD RECONSTRUCTION
Historically, directly fitting statistical 3D Morphable Models
(3DMMs) to an image has been a popular method to recover
the 3D head shape [24]–[27], but 3DMMs are limited to
coarse shape estimation, requiring separate steps of recon-
structing e.g. wrinkles [25] or hair [28]. In addition, 3DMMs
are constructed from 3D scans which might be hard to obtain
for many classes. Other more descriptive and flexible 3D
representations include depth maps [29]–[31], regular meshes
[32], [33], and volumetric grids [34], although many of these
approaches still rely on 3DMM in their intermediate steps.
Two rare examples of completely model-free methods that
also reconstruct hair [31], [32] are self-supervised GANs [35]
that learn from unlabeled collections of images. However,
actual fitting to unseen images (e.g. GAN inversion) was not
demonstrated. More information on face/head reconstruction
before the advent of 3D neural implicit methods is available
in recent comprehensive surveys [36], [37].
Recently, several works have successfully applied neural

implicit representations to the head reconstruction task, but
most of them either do not reconstruct geometry directly
(e.g. because of ill-suited NeRF representation) or require
complex datasets. Portrait-NeRF [38] is an early attempt of
meta-learning a single-view NeRF. The support of only slight
viewpoint changes has been demonstrated for this method.
The i3DMM method [39] introduced the first 3DMM to
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include hair. This method is based on SDFs and is constructed
from about 2000 3D scans of 64 people. H3D-Net [4] meta-
learns high-quality SDF representation of full static heads and
supports reconstruction from as few as three posed images
(though feeding just one image is also possible). The method
is trained on a private dataset of 10,000 structured-light 3D
scans. HeadNeRF [40] yields controllable NeRF portraits
conditioned on latent 3DMM vectors (identity, expression,
albedo, and illumination). It is a fully supervised approach,
and authors were able to train it in reasonable time thanks
to a strategy that improves rendering performance [41]. The
authors of EG3D [42] went even further and trained a Style-
GAN2 [35] to yield volume-renderable 3D heads with very
little supervision (a similar ideawas proposed inVolumeGAN
[43] simultaneously). Like HeadNeRF, EG3D can fit an arbi-
trary head photo by optimizing the latent vector(s). Moreover,
their paper demonstrates extracting meshes of convincing
quality. Still, this method is computationally 80× more ex-
pensive to train than Multi-NeuS, and it does not reconstruct
parts of the head that are further from the face due to the lack
of dedicated background modeling.

III. METHOD
A. RECAP: NEUS RECONSTRUCTION
As our method builds upon NeuS [6], we start with the review
of this method. NeuS is a modification of NeRF [10] for non-
transparent objects. It models the object surface directly, thus
allowing 3D surface reconstruction from images using differ-
entiable neural rendering. Specifically, the object surface in
NeuS is represented as the zero-level set of a signed distance
function

{
x ∈ R3 | SDF(x) = 0

}
, where SDF is defined as

signed distance to object surface and is modeled by a neu-
ral network. In addition, RGB radiance at any 3D point is
modeled by another neural net, and density is modeled as a
bell-shaped function of SDF that attains its maximum at zero,
i.e. at the object surface. More specifically (see Figure 2),
the SDF network is a simple multi-layer perceptron (MLP)
with 8 hidden layers of 256 neurons and softplus activations
(β = 100), and the radiance network is anMLPwith 4 hidden
layers of 256 neurons and ReLU activations. The former
network takes a 3D coordinate and outputs an SDF value and
a latent vector. Meanwhile, the latter network takes this latent
vector, the 3D coordinate, the camera view direction, and the
gradient of the SDF, and outputs the RGB radiance value.
Positional encodings [10] are applied to 3D coordinates (6
dimensions) and view directions (4 dimensions).

The radiance and density of points sampled along the rays
corresponding to pixels of input images are used to run dif-
ferentiable volume rendering [10] that integrates the samples
along the ray and outputs its RGB color. The optimization
algorithm forces the RGB results of ray integration to be
similar to the corresponding known pixel intensities by pro-
gressively tuning the weights of neural networks. The loss
function to optimize is a simple pixelwise mean squared error
combined with an eikonal regularization term that ensures
∥∇SDF(x)∥ = 1. After convergence, it is possible to obtain

object mesh via marching cubes [16] over SDF(x), as well
as to synthesize novel views by volume rendering or any ray
marching algorithm, such as sphere tracing.
The multi-view captures may include distant background

which is difficult to represent by the above neural nets. There-
fore, the object of interest is considered to be within a unit
sphere, and everything outside of that sphere is modeled by a
separate dedicated NeRF with the special parametrization of
coordinates [44]. To optimize this NeRF along with NeuS,
extra ray points are sampled outside of the unit sphere. A
sufficiently large dataset lets such tandem to disentangle
background from the central object automatically, without
mask supervision.
NeuS achieves excellent results when applied to sets con-

taining dozens of images. Our goal is to create a NeuS-based
system that can perform reconstruction given a single image
or very few images. This scenario is too under-constrained
for the original NeuS and will result in poor convergence. To
alleviate this, we narrow down the class of potential scenes to
human heads and pre-train our model on a dataset of multiple
people, while facilitating knowledge transfer to unseen people
as discussed below.

B. MULTI-NEUS

Our solution called Multi-NeuS is depicted in Figure 2. We
upgrade NeuS so that it can fit to N scenes simultaneously.
Our high-level idea is simple. We create N copies of scene-
specific NeuS instances that share some of the layers, while
keeping other layers unshared (scene-specific). We then fit
these N instances to the scenes simultaneously, while option-
ally imposing additional structural regularization on scene-
specific layers.
Naturally, we expect that during such fitting shared layers

will tend to model features useful to represent any object,
while scene-specific layers combine, refine and augment the
output of shared layers to model a specific object. For in-
stance, a shared layer might model rough basic human head
shapes, while the following (scene-specific) layer may learn
the weights with which to combine those shapes, like in linear
blend skinning models.
We experiment with two architectures for scene-specific

layers that are described below in Section III-C. As shown
in Figure 2, we use scene-specific layers in the first halves of
the SDF network and the radiance network, while sharing all
other layers. This choice is evaluated in Section IV-D.
Differently from NeuS, Multi-NeuS learns N independent

scene-specific instances of background NeRFs. Also, we do
not model view-dependent effects in our architecture, effec-
tively assuming that human heads do not produce specular
reflections. We find that on our dataset (which is captured in
scattered light), this does not hurt validation performance but
significantly reduces overfitting in few-shot mode especially
when generalizing to new lighting.
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FIGURE 2. Architecture of Multi-NeuS, a 3D neural implicit function that can represent multiple objects of a class simultaneously (boxes depict fully
connected layers and their output dimensionalities; γ is the positional encoding function). Since some layers (blue) are shared between all scenes, they
can learn class priors to then transfer knowledge to novel scenes of the same class, enabling few-shot reconstruction. The model is trained via volumetric
rendering and simple pixelwise loss, just like NeuS [6], but on a dataset of multiple scenes. Afterwards, when fitting to an unseen object, scene-specific
layers (yellow, Section III-C) are fitted first, and finally all layers are fine-tuned together.
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FIGURE 3. The two architectures of scene-specific layers explored in our
paper, independent (a) and low-rank (b). They are fully connected layers
whose weights and biases w (i ) depend on scene index i . An independent
layer learns individual weights and biases for each of N scenes, while a
low-rank layer learns r copies and then linearly combines them with each
scene’s own learnable coefficients.

C. SCENE-SPECIFIC LAYERS
We use the scene (person) index i ∈ 1,N to enumerate
scene-specific layer instances. Thus, by considering different
instances within scene-specific layers, the same network ar-
chitecture models every object in the dataset. In this work, we
experiment with two architecture choices for scene-specific
layers (Figure 3), which we term independent and low-rank.
They are described below.

Independent layers (Figure 3, a). This is a straightforward
implementation where the scene-specific layer has a dedi-
cated set of weights and biases w1, . . . ,wN for each scene.
This architecture has large representational power but has
significant drawbacks.

First, during meta-learning, each wi receives infrequent
weight updates during learning. Thus, if a training minibatch
includes pixels from few (m ≪ N ) scenes, then sub-layers
corresponding to all other scenes do not receive any weight
updates. Alternatively, a minibatch can be composed of ran-
dom pixels from the entire dataset (m ≈ N ). In this case,

however, wi’s gradients become too noisy, coming from just
few (≈ N

m ) pixels, again leading to slow/poor convergence.
In practice, batching together pixels from many scenes is

inefficient as it requires to run m ≈ N layers in each forward
pass, so in our experiments we set m = 1, i.e. we sample all
pixels of aminibatch from just one scene.We therefore use the
Adam [45] optimizer but updatemoment statistics for a scene-
specific layer only when the corresponding scene participates
in the forward pass (known as ‘‘sparse/lazy Adam").
Another related problem with independent layers is over-

fitting due to the excessive number of parameters. This often
leads to poor generalization to new subjects. Our second
architecture below is designed to alleviate this by a built-in
regularization.

Low-rank layers (Figure 3, b). In this scheme, scene-specific
layer’s weights and biases w (i) ∈ Rp are not learnt directly.
Instead, they are computed as a linear combination of r basis
vectors b1, . . . , br :

w (i) =
r∑

j=1

cijbj , (1)

where r is the layer’s rank. We learn both the basis vectors
bj ∈ Rp and the linear combination coefficients cij ∈ R,
where i ∈ 1,N and j ∈ 1, r . Thus, each scene-specific layer
learns a single set of r basis vectors for the entire training
dataset containing multiple scenes, and these vectors are re-
combined with different weights to model different scenes,
therefore a separate set of r coefficients is learned for each
of the N scenes. Such low-rank factorization decreases the
number of parameters significantly (by a factor of several
hundreds in our experiments), reducing overfitting.

D. TRAINING
Multi-NeuS is applied in two stages: meta-learning and fitting
(see Figure 4).
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In the initial meta-learning stage, we pre-train the whole
architecture using the same volumetric rendering procedure
as in NeuS (Section III-A) but on a dataset of multi-view
RGB images of N scenes rather than a single scene. At
every optimization step, a minibatch of camera rays (or,
equivalently, image pixels) is sampled uniformly from eight
random images of one random scene. Eventually, Multi-NeuS
estimates the 3D shape and texture of every scene (subject) in
the dataset.

After meta-learning, we can fit to new scenes starting
from the pre-trained initialization. This fitting stage is thus
conducted to estimate the 3D shape and the texture of a
novel unseen object. To represent that object, we add the new
(N + 1)-st scene to the model, that is, the (N + 1)-st set
of scene-specific layers, initialized as described below. This
time, we are given images of the new subject (can be as few
as one or two), their estimated camera parameters, and their
background segmentation masks.

The fitting process is performed in two steps: we first
retrain the scene-specific weights and then we fine-tune all
weights to the new scene. The first step begins with initial-
izing scene-specific weights. We do it by simply averaging
these weights over N scenes so that the (N + 1)-st repre-
sentation in Multi-NeuS essentially represents ‘‘the average
object in the dataset’’ as learned by the scene-specific layers.
That is, for independent layer we set wN+1 = 1

N

∑N
i=1 wi,

and for the low-rank layer cN+1 = 1
N

∑N
i=1 ci. Note that in

the low-rank layer the basis weights b1, . . . , br are not scene-
specific but are in fact shared by all scenes. Therefore, we
do not optimize or reset them in the first step of the fitting
process. After optimizing the newly initialized scene-specific
weights in the first step, in the second step we ‘‘unfreeze’’ the
shared weights and optimize all weights while using a smaller
learning rate.

The optimization during the fitting stage is performed in
the same way as in the meta-learning stage with two notable
differences. Firstly, instead of using a dedicated background
NeRF [6], we explicitly estimate background masks and op-
timize an additional loss that forces the SDF isosurface to
match these masks. The loss used in this case is the binary
cross-entropy between the accumulated density over a ray and
the foreground mask value (1 if object, 0 if background). This
is needed since we found that background separation in the
original NeuS works unsatisfactory in the few-shot regime.

The second modification is fine-tuning the camera param-
eters. This is needed because camera estimates can be inac-
curate, especially for in-the-wild images from the Internet.
To compensate for that, we backpropagate the losses into the
camera parameters and optimize them alongside the neural
networks with a 10× smaller learning rate.

Please refer to Section IV-E for additional details, including
the implementation details and the hyperparameters.

IV. EXPERIMENTS

A. DATASETS
Our training (meta-learning) dataset is a subset of SmartPor-
traits [46]. It consists of 107 short (≈ 25 seconds) smartphone
videos of still people with neutral pose and facial expression.
Four of these (two female and two male subjects) serve as the
validation set. In each video, the distance to the head (≈ 1.5
m) and the elevation are roughly constant, while the azimuth
travels within ±45◦. From each video, we remove frames
with flash and randomly pick about 77 frames from the rest,
shrinking the entire dataset to 8256 images.We obtain camera
parameters by running the COLMAP structure-from-motion
software [47] on these images. Finally, these images are
loosely cropped to head and shoulders using a face detector.
Note that we do not use any motion or depth information in
our system.
Because Multi-NeuS takes in the absolute 3D coordinates,

all scenes are aligned against each other to minimize the rel-
ative difference between objects. This helps our network not
to spend capacity on modeling translations and scaling, and
thus to fit the training set easier. We accomplish approximate
alignment as follows. For each scene, we detect six prominent
facial landmarks in images [48]. We then triangulate the 2D
landmarks to get their 3D coordinates. We choose the the first
scene of SmartPortraits as a reference one. For all other scenes
we compute an optimal similarity transform T [49] that aligns
two set of points: the triangulated 3D landmarks with the
reference ones. It is achieved by finding the optimal transla-
tion, rotation and scaling byminimizing the root-mean-square
deviation of the point pairs. Finally, the transform T is applied
to all camera poses of the current scene. We estimate and
apply such similarity transform not only for SmartPortraits
but for every scene of every dataset used in this work.
We also validate on the H3DS dataset [4], which consists

of ten individuals. For each individual, the dataset offers a full
head 3D scan (mesh) alongside with 60 to 70 360◦ photos
taken with varying lighting, and camera parameters for these
photos.
Besides, we provide qualitative results on several paintings

and in-the-wild photos found on the Web. To that end, we
estimate camera parameters for a single photo as follows. We
detect the same six landmarks as above, but this time obtain
their approximate 3D coordinates in orthographic camera
coordinate system ( [48] provides them directly). We assume
that these coordinates are 3D world coordinates, and that the
image was taken with a telephoto lens with the vertical field
of view of ≈ 10◦. These asssumptions allow us to roughly
recover the camera pose in world coordinates, namely via an
algorithm for the Perspective-n-Point (PnP) problem [50].
When fitting to any unseen pictures, we estimate back-

groundmasks using an off-the-shelf model [51] and manually
refine them.

B. SINGLE-VIEW GEOMETRY RECONSTRUCTION
By providing ground truth 3D scans, H3DS permits a quan-
titative comparison of geometry reconstruction, so we use it
to compare against H3D-Net [4], which was tailored for this
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FIGURE 4. The training stages of Multi-NeuS (Section III-D). Row 1: the entire model, including scene-specific layers, is optimized to represent N scenes.
Row 2: to fit to a novel ("(N + 1)-st") scene, scene-specific layers are re-initialized by the aggregation over the weight values over N scenes. Row 3:
scene-specific layers only are optimized for the novel person (based on as few as one or two images). Row 4: all layers are optimized with a smaller
learning rate.

Input H3D-Net Ours GT Input H3D-Net Ours GT

FIGURE 5. Single-view mesh reconstruction on the first four scenes of the H3DS dataset. H3D-Net [4], a method related to ours, was designed for
three-view reconstruction but can also be evaluated in the one-shot mode. The H3D-Net system was trained on 10,000 3D scans from the same
distribution as these test examples. Our method is trained on a hundred smartphone videos and still matches the quality of H3D-Net, while
demonstrating somewhat smaller identity gap and less pronounced regression-to-mean effect.

dataset. Although H3D-Net was demonstrated to reconstruct
from three or more views, it can fit to a single view as well,
and it has an advantage on the H3DS dataset since this model
was trained on a large dataset (10,000 scenes) from the same
distribution.

The target metrics, as in [4], are unidirectional Cham-
fer distances in millimeters from the predicted mesh to the
ground truth, computed after rigid alignment via ICP [52].
One metric is the distance computed over facial area only, and
the other one is computed over the entire ground truth mesh

of a head.

We compute 1-view metrics by reconstructing from left,
right (azimuth≈ 45◦), and frontal views.We do not apply our
method in few-shot setting on H3DS because images in this
dataset are taken with varying lighting and exposure, lacking
multi-view consistency required for Multi-NeuS.

We compare our best model (low-rank architecture, r =
1000; evaluated in Section IV-C)withH3D-Net in Table 1 and
Figure 5. Our method practically matches H3D-Net in recon-
struction accuracy while learning from a different dataset that
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face head
Input view F L R mean F L R mean

H3D-Net 3-view - - - 1.34 - - - 10.53

H3D-Net 1-view 1.82 1.83 1.91 1.85 13.83 13.01 12.51 13.12
Ours 1-view 1.89 1.77 1.86 1.84 13.00 13.27 11.95 12.74

TABLE 1. Mesh reconstruction error in millimeters on H3DS dataset.
Lower is better, "F/L/R" are for "frontal/left/right". See Section IV-B for
details.

FIGURE 6. Quality of novel view reconstruction depending on
scene-specific layer type (Section III-C), measured on our validation
subset of SmartPortraits. Lower rank metamodels have fewer degrees of
freedom and underfit during the first step of fitting; higher rank models
fit better and provide a more convenient initialization for the second step
of fitting (fine-tuning of all weights).

has 100× fewer identities and does not require 3D scanning.
Furthermore, rendered samples suggest that H3D samples
look very similar to each other, especially outside of the face
region (the so-called regression-to-mean effect) while our
model predicts more ‘‘personalized’’ shapes.

To demonstrate additional single-view geometry recon-
struction, we show several reconstructions of in-the-wild pho-
tographs and paintings in Figure 7 and in the supplementary
video.

C. EFFECT OF NUMBER OF VIEWS AND LAYER TYPE
Although our primary aim is to reconstruct heads given just
one image, our method naturally benefits from additional
views. We demonstrate this on the validation subset of Smart-
Portraits. Similarly to H3DS, we restrict the scenes to the
views: left, right (with azimuths around ±45◦) and frontal.
Since 3D ground truth is not available in this case, we render
two additional control views (±20◦) and compute masked
PSNR against the ground truth images corresponding to these
two views (control images). These are in turn averaged over
four validation scenes.

We observe that during fitting to a novel person, optimizing
camera parameters provides additional degrees of freedom.
This often leads to the person’s shape in Multi-NeuS drifting
away from its ‘‘canonical’’ position (Section IV-A) and inflat-

ing the validation error, even when the reconstruction is good.
Moreover, the two control cameras might be estimated inac-
curately during data pre-processing. To address this, before
reporting PSNR against control images, we refine the control
cameras’ poses and focal distances by optimizing for PSNR.
Figure 6 compares how faithfully the novel views are re-

constructed depending on the number of input views (one,
two, or three) and depending on the layer type (independent
or low-rank). In the case of a single input view, the metric
is averaged over reconstructions from left, right, and frontal
views. In the two views case, we take the left+right views as
input.
Consider low-rank models. Clearly, at the first step of

fitting (Figure 6, left), when only linear combination coeffi-
cients cN+1 and camera parameters are optimized, the models
underfit in the case of low ranks. When the rank is very
high (2000), the models start to overfit since the number of
parameters becomes excessive. This is additionally illustrated
in Figure 8.
In all cases, the second step of fitting (Figure 6, right)

where all parameters are fine-tuned is necessary because
low-rank coefficients have few degrees of freedom. Multi-
NeuS without the second step thus underfits the input views.
However, in the few-shot setting, optimizing the full network
can lead to severe overfitting. So the primary goal of the first
fitting step is to provide a good initialization for this second
step. According to the diagram, models with a reasonably
high rank (e.g. 1000) provide best initializations, but this
comes at a cost of overfitting during fine-tuning which may
even decrease the overall PSNR by distorting the unseen areas
of the resulting shape. This is probably because high rank
scene-specific layers gain too much representational power
and the shared layers are not forced as hard to learn univer-
sal features, thus hampering generalization. An alternative
interpretation is that since we spend the same number of
fine-tuning iterations regardless of rank, early stopping might
alleviate some overfitting issues.
Another obvious observation is that with more views the

effect of overfitting decreases, and the advantage of higher-
rank models becomes less pronounced (e.g. a 50-rank model
already does well for the three-view reconstruction). In addi-
tion, the change in the number of views allows to assess the
capacity of scene-specific layers.
The model with independent scene-specific layers does not

generalize well because of the excessive capacity. Although
it demonstrates larger PSNR than 50- and 150-rank models,
it does so because its scene-specific layers are usual linear
layers which can fit the training view really well, while low-
rank models underfit. At the same time, the unseen parts in
the validation views already get distorted in the first step and
this is why the second step (fine-tuning) does not improve the
score in this case.
Finally, to prove the necessity of shared architectures and

meta-learning, we compare to a simple baseline (Figure 6,
extreme right) where a vanilla NeuS (without view directions)
is trained on a scene from SmartPortraits and is then fine-
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Input Input Input

FIGURE 7. Additional results for 3D reconstruction of in-the-wild photographs and paintings. Our method is able to handle different hair styles and
performs reasonably well for images that are different from the training SmartPortraits dataset. Note the back may have artifacts because this part of the
head is mostly absent in the training dataset due to very limited view angles.

independent r = 50 r = 150 r = 400 r = 1000 r = 2000fitting view (source) ground truth

FIGURE 8. The first (coarse) step of fitting (i.e. shared layers frozen) for various architectures of scene-specific layers. The scene is a subject from the
validation subset of SmartPortraits. The amount of overfitting can be traced by looking at the right cheek and ear, which are invisible in the source view.
The independent architecture with overparametrized scene-specific layers overfits already at this fitting stage. The low-rank variants become better at
fitting these hidden parts with increasing ranks and model the texture better, but at some point (r = 2000 in this case) get too many degrees of freedom
and start to overfit. r = 1000 provides optimal reconstruction in this case (and on average).

tuned (transfer-learned) in a few-shot scenario to the target
scene. This is essentially equivalent to Multi-NeuS with N =
1, i.e. with a pre-training dataset of 1 scene. The score for
this baseline was computed by transferring from 4 different
SmartPortraits training scenes (2 male, 2 female) and averag-
ing the metric. Although NeuS typically fits better to a single
scene than Multi-NeuS to any of its meta-learning scenes, its
few-shot generalization ability is clearly lower compared to
any version of Multi-NeuS.

D. WHICH LAYERS TO MAKE SCENE-SPECIFIC
In this subsection, we evaluate the exact choice to put scene-
specific layers into the first halves of the SDF network and
the radiance network of vanilla NeuS.

Some possible choices are listed in Table 2 and are eval-
uated for low-rank shared layers with r = 1000. Putting the
scene-specific layers to the radiance network only results
in a constant SDF in the first stage of fitting. This results
in very low metrics. Results for other sharing patterns are
harder to interpret, but arguably good performance requires
sufficient number of scene-specific layers (having too few

one step of fitting full fitting
Number of views 1 2 3 1 2 3

■■■■■■■■■■■■■■ did not converge
□□□□□□□□□■■■■■ 17.61 19.35 20.78 18.19 19.21 23.67
□■□□■□□■□□■□□■ 20.49 23.10 23.71 20.76 24.03 25.25
□■□■□■□■□□■□■□ 21.48 23.72 24.18 21.26 24.19 25.16
□□□□□■■■■□□□■■ 21.75 23.94 24.29 20.78 24.31 25.15
■■■■□□□□□□□□□□ 21.85 23.85 24.56 21.84 24.28 25.23
■■■■■■■■■□□□□□ 21.92 24.25 24.77 21.59 24.03 25.22
■■■■□□□□□■■□□□ 22.43 24.26 24.66 21.99 24.39 25.27

TABLE 2. Novel view reconstruction quality depending on the choice of
layers to replace with their scene-specific variants. We test the
performance on the validations scenes from SmartPortraits and report
PSNR values (in dB) averaged across holdout views. Boxes depict
sequential fully-connected layers — like in NeuS, there are 9 layers that
predict SDF, followed by 5 layers that predict radiance. ■ means
scene-specific layer, □ means shared, i.e. vanilla linear layer. Layer type is
low-rank, r = 1000.

of them is detrimental). Furthermore, at least some of these
layers should be among the early processing layers.
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E. IMPLEMENTATION DETAILS AND HYPERPARAMETERS
In both meta-learning and fitting, we use minibatches of
512 rays. In our experiments, there are 610,000 optimization
iterations during meta-learning, 12,000 iterations in the first
stage of fine-tuning and 13,000 in the second stage of fine-
tuning. Pre-training (meta-learning)Multi-NeuS takes around
24 hours and fitting it to a novel subject takes about an hour on
a single NVIDIAV100 GPU. The learning rate is 1.8·10−4 in
meta-learning, 4 · 10−4 in the first step of fitting and 6 · 10−5

in the second step. We multiply the learning rate by 0.316
every time the loss stops decreasing (known as ‘‘reduce-on-
plateau schedule"). All other hyperparameters, including the
number of ray sampling steps, eikonal loss weight, weight
initialization (including that in the fitting stage) are kept the
same as in NeuS [6].

We optimize camera parameters similar to [53]. Specifi-
cally, we (1) multiply initial camera rotation matrix by opti-
mizable update matrix parametrized using so(3) Lie algebra,
(2) add a optimizable residual to the translation parameters,
and (3) multiply focal length by an optimizable scalar.

V. DISCUSSION
We have presented Multi-NeuS – an approach for one- and
few-shot 3D head portrait reconstruction. The approach can
reconstruct head portraits in the form of surface mesh and
texture. To enable the few-shot capability, we propose and
validate a very simple idea of taking a scene-specific deep
architecture (NeuS) and fitting it to multiple scenes, while
sharing some parameters across scenes. We show that despite
simplicity, this idea is sufficient to accomplish knowledge
transfer from the training scenes to previously unseen test
scenes. We believe that this general idea might be applicable
beyond head portrait reconstruction to other classes (e.g. full-
body reconstruction) and architectures (e.g. different NeRF
types).

Our approach has certain limitations. Many of them are
due to rather constrained training dataset. First, there are
only 103 training sequences. Although Multi-NeuS’ gener-
alization ability seems very good for such a small dataset,
there is still low diversity of hair styles, adornments, and
skin types. In addition, SmartPortraits only exhibits neutral
facial expressions, though in practice Multi-NeuS still seems
to reconstruct smiles reasonably well. Moreover, the camera
in the dataset only travels at most ±45◦ around the head
and therefore does not capture the back. As a result, our
model always fails to reconstruct the back because it has never
"seen" it in training (Figure 7, bottom right; Figure 9). Thus,
an obvious remedy to improve the quality is to expand our
training set.

Our models might benefit greatly from further improve-
ments and simplifications of the underlying architecture.
While the first step of fitting often provides a good initializa-
tion for occluded regions, the second step sometimes worsens
these regions (Figure 8; Figure 10). This could be addressed
with ad-hoc inpainting procedures that exploit class-specific
symmetries, or more principled extensions of our method

FIGURE 9. A limitation of training on SmartPortraits: the back is never
visible in the dataset, leading to poor reconstructions or occluded regions
beyond the ears.

such as learned gradient descent [54], [55]. However, the
fundamental problem might be hidden deeper in the network
architecture. This is additionally highlighted by the fact that
Multi-NeuS struggles to fit training samples with the same
accuracy as NeuS. A promicing direction for future investi-
gation is therefore how to reduce the model complexity even
further (e.g. by using small learnable latent dictionaries) and
to allow for very large datasets and better generalization.

FIGURE 10. A limitation of the underlying architecture of Multi-NeuS: at
the second step of fitting, artifacts sometimes reappear in the occluded
regions (left column: left cheek and "yellow hair"). Shown are the renders
of the control views (top and bottom) for Multi-NeuS fitted to one frontal
(left) and two ±45◦ (middle) views next to the ground truth (right). Here
we apply our best model on a validation scene from SmartPortraits.

Finally, themodels producedwith our approach comewith-
out rigging capability, and in the future it would be interesting
to extend our framework to address this.
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